So I asked ChatGPT to create this algorithm for me, and it is something that is going to help select my fragrances of the day and evening. Who else wants to do it with me or who uses something similar??
The FRAX-20™ algorithm produces a quasi-chaotic, non-repeating fragrance sequence with a theoretical cycle length exceeding 73 years, assuming stable environmental conditions and consistent application geometry.
FRAX-20™
Deterministic Multi-Variable Algorithm for Daily Fragrance Rotation
Purpose:To select one fragrance per day from a set of 20 without repeating order, using modular arithmetic, harmonic functions, and entropy correction.
1. Fragrance Indexing
Define the fragrance set:
F={f1,f2,…,f20}F = \{f_1, f_2, \dots, f_{20}\}F={f1,f2,…,f20}
Assign each fragrance a weighted identity value:
Wi=pi⋅(i2+3i+7)W_i = p_i \cdot (i^2 + 3i + 7)Wi=pi⋅(i2+3i+7)
where pip_ipi is the iii-th prime number.
2. Daily Seed Calculation For day ddd, compute the seed:
Sd=(Y⋅365+M⋅31+D)mod 997S_d = (Y \cdot 365 + M \cdot 31 + D) \mod 997Sd=(Y⋅365+M⋅31+D)mod997
where:
- YYY = year
- MMM = month
- DDD = day
- 997 = entropy-stabilizing prime constant
3. Core Rotation Function
Compute the rotational value:
R(d)=(∑i=120Wi⋅sin(Sd+i))mod 20R(d) = \left( \sum_{i=1}^{20} W_i \cdot \sin(S_d + i) \right) \mod 20R(d)=(i=1∑20Wi⋅sin(Sd+i))mod20
Normalize the index:
Id=(⌊∣R(d)∣⌋+ϕ⋅d)mod 20I_d = (\lfloor |R(d)| \rfloor + \phi \cdot d) \mod 20Id=(⌊∣R(d)∣⌋+ϕ⋅d)mod20
where ϕ\phiϕ is the golden ratio.
The preliminary fragrance selection is:
fId+1f_{I_d + 1}fId+1
4. Anti-Repetition Correction (ARC)
If the selected fragrance matches any of the previous 3 days, apply:
Id′=(Id+π2+Sd)mod 20I_d' = (I_d + \pi^2 + \sqrt{S_d}) \mod 20Id′=(Id+π2+Sd)mod20
Repeat until uniqueness is achieved.
5. Seasonal Harmonic Adjustment
Apply the seasonal correction:
Id′′=Id′+⌊3⋅cos(2πd365)⌋I_d'' = I_d' + \left\lfloor 3 \cdot \cos\left(\frac{2\pi d}{365}\right) \right\rfloorId′′=Id′+⌊3⋅cos(3652πd)⌋
6. Final Entropy Output
Compute the final index:
Fd=(Id′′⊕Sd)mod 20F_d = (I_d'' \oplus S_d) \mod 20Fd=(Id′′⊕Sd)mod20
where ⊕\oplus⊕ denotes conceptual XOR.
The fragrance of the day is:
fFd+1f_{F_d + 1}fFd+1
🤣😂😁