๐ช๐ฎ๐ฟ๐ฒ๐ต๐ผ๐๐๐ฒ ๐ผ๐ฟ ๐๐ฎ๐ธ๐ฒ๐ต๐ผ๐๐๐ฒ? ๐ ๐๐ฎ๐๐ฎ ๐๐ป๐ด๐ถ๐ป๐ฒ๐ฒ๐ฟโ๐ ๐๐ฒ๐ฐ๐ถ๐๐ถ๐ผ๐ป ๐๐๐ถ๐ฑ๐ฒ
Since Microsoft Fabric entered our lives, the rules of the data game have changed. Your data now lives as a Single Copy in OneLake, stored in open Delta Parquet format. But hereโs the truth: ๐ The storage layer is unified. ๐ The compute engine is the real strategic choice. As a Data Engineer, how do you choose the right architecture? Letโs break it down. ๐๏ธ ๐ญ. ๐ช๐ฎ๐ฟ๐ฒ๐ต๐ผ๐๐๐ฒ: ๐ง๐ต๐ฒ ๐ฃ๐ผ๐๐ฒ๐ฟ ๐ผ๐ณ ๐ง-๐ฆ๐ค๐ ๐ฎ๐ป๐ฑ ๐ฆ๐๐ฟ๐ถ๐ฐ๐ ๐๐ผ๐๐ฒ๐ฟ๐ป๐ฎ๐ป๐ฐ๐ฒ If your project demands high discipline, transactional integrity, and a fully structured environment โ this is your domain. ๐๐๐ฎ ๐พ๐๐ค๐ค๐จ๐ ๐๐ฉ? Full DML support directly via SQL: ๐๐ก๐ฆ๐๐ฅ๐ง, ๐จ๐ฃ๐๐๐ง๐, ๐๐๐๐๐ง๐, ๐ ๐๐ฅ๐๐. You can build controlled, deterministic data pipelines entirely in T-SQL. ๐ ๐๐๐ ๐๐๐๐ง๐๐ฉ ๐๐๐๐ฅ๐ค๐ฃ: ๐๐ช๐ก๐ฉ๐-๐ฉ๐๐๐ก๐ ๐๐ง๐๐ฃ๐จ๐๐๐ฉ๐๐ค๐ฃ๐จ Execute complex business logic via: Stored Procedures Explicit Transactions (BEGIN TRAN, COMMIT) Enterprise-grade schema enforcement Perfect for finance, ERP, and systems that demand strict consistency. ๐ ๐ฎ. ๐๐ฎ๐ธ๐ฒ๐ต๐ผ๐๐๐ฒ: ๐๐น๐ฒ๐
๐ถ๐ฏ๐ถ๐น๐ถ๐๐ ๐ฎ๐ป๐ฑ ๐๐ต๐ฒ ๐ฆ๐ฝ๐ฎ๐ฟ๐ธ ๐๐ฐ๐ผ๐๐๐๐๐ฒ๐บ If youโre dealing with massive datasets, semi-structured data (JSON, Logs), or ML-heavy workloads โ the Lakehouse shines. ๐๐๐ฎ ๐พ๐๐ค๐ค๐จ๐ ๐๐ฉ? Process unstructured/semi-structured data easily. Use Spark + Python for scalable engineering. Leverage distributed compute for heavy transformations. โ ๏ธ ๐ง๐ต๐ฒ ๐๐ฟ๐ถ๐๐ถ๐ฐ๐ฎ๐น ๐๐ถ๐๐๐ถ๐ป๐ฐ๐๐ถ๐ผ๐ป You can query Lakehouse tables using the SQL Analytics Endpoint, but it is Read-Only. Writes and transformations happen through: Spark Notebooks Spark Job Definitions Dataflows Gen2 SQL here is strictly for analytics and verification, not for data manipulation pipelines. โก ๐ง๐ต๐ฒ ๐ฆ๐ต๐ฎ๐ฟ๐ฒ๐ฑ ๐ฃ๐ผ๐๐ฒ๐ฟ: Direct Lake Mode Both Warehouse and Lakehouse support Direct Lake. Power BI reads directly from OneLake Delta filesโno import, no refresh cycles, near real-time performance. ๐ ๐ง๐ต๐ฒ ๐๐ป๐ด๐ถ๐ป๐ฒ๐ฒ๐ฟ๐ถ๐ป๐ด ๐๐ฒ๐ฐ๐ถ๐๐ถ๐ผ๐ป ๐ ๐ฎ๐๐ฟ๐ถ๐
Make your decision based on three pillars: 1๏ธโฃ Team Skillset T-SQL heavy team โ #Warehouse