๐—ช๐—ฎ๐—ฟ๐—ฒ๐—ต๐—ผ๐˜‚๐˜€๐—ฒ ๐—ผ๐—ฟ ๐—Ÿ๐—ฎ๐—ธ๐—ฒ๐—ต๐—ผ๐˜‚๐˜€๐—ฒ? ๐—” ๐——๐—ฎ๐˜๐—ฎ ๐—˜๐—ป๐—ด๐—ถ๐—ป๐—ฒ๐—ฒ๐—ฟโ€™๐˜€ ๐——๐—ฒ๐—ฐ๐—ถ๐˜€๐—ถ๐—ผ๐—ป ๐—š๐˜‚๐—ถ๐—ฑ๐—ฒ
Since Microsoft Fabric entered our lives, the rules of the data game have changed. Your data now lives as a Single Copy in OneLake, stored in open Delta Parquet format.
But hereโ€™s the truth:
๐Ÿ‘‰ The storage layer is unified.
๐Ÿ‘‰ The compute engine is the real strategic choice.
As a Data Engineer, how do you choose the right architecture? Letโ€™s break it down.
๐Ÿ›๏ธ ๐Ÿญ. ๐—ช๐—ฎ๐—ฟ๐—ฒ๐—ต๐—ผ๐˜‚๐˜€๐—ฒ: ๐—ง๐—ต๐—ฒ ๐—ฃ๐—ผ๐˜„๐—ฒ๐—ฟ ๐—ผ๐—ณ ๐—ง-๐—ฆ๐—ค๐—Ÿ ๐—ฎ๐—ป๐—ฑ ๐—ฆ๐˜๐—ฟ๐—ถ๐—ฐ๐˜ ๐—š๐—ผ๐˜ƒ๐—ฒ๐—ฟ๐—ป๐—ฎ๐—ป๐—ฐ๐—ฒ
If your project demands high discipline, transactional integrity, and a fully structured environment โ€” this is your domain.
๐™’๐™๐™ฎ ๐˜พ๐™๐™ค๐™ค๐™จ๐™š ๐™„๐™ฉ?
Full DML support directly via SQL: ๐—œ๐—ก๐—ฆ๐—˜๐—ฅ๐—ง, ๐—จ๐—ฃ๐——๐—”๐—ง๐—˜, ๐——๐—˜๐—Ÿ๐—˜๐—ง๐—˜, ๐— ๐—˜๐—ฅ๐—š๐—˜. You can build controlled, deterministic data pipelines entirely in T-SQL.
๐Ÿ” ๐™๐™๐™š ๐™Ž๐™š๐™˜๐™ง๐™š๐™ฉ ๐™’๐™š๐™–๐™ฅ๐™ค๐™ฃ: ๐™ˆ๐™ช๐™ก๐™ฉ๐™ž-๐™ฉ๐™–๐™—๐™ก๐™š ๐™๐™ง๐™–๐™ฃ๐™จ๐™–๐™˜๐™ฉ๐™ž๐™ค๐™ฃ๐™จ Execute complex business logic via:
Stored Procedures
Explicit Transactions (BEGIN TRAN, COMMIT)
Enterprise-grade schema enforcement
Perfect for finance, ERP, and systems that demand strict consistency.
๐ŸŒŠ ๐Ÿฎ. ๐—Ÿ๐—ฎ๐—ธ๐—ฒ๐—ต๐—ผ๐˜‚๐˜€๐—ฒ: ๐—™๐—น๐—ฒ๐˜…๐—ถ๐—ฏ๐—ถ๐—น๐—ถ๐˜๐˜† ๐—ฎ๐—ป๐—ฑ ๐˜๐—ต๐—ฒ ๐—ฆ๐—ฝ๐—ฎ๐—ฟ๐—ธ ๐—˜๐—ฐ๐—ผ๐˜€๐˜†๐˜€๐˜๐—ฒ๐—บ If youโ€™re dealing with massive datasets, semi-structured data (JSON, Logs), or ML-heavy workloads โ€” the Lakehouse shines.
๐™’๐™๐™ฎ ๐˜พ๐™๐™ค๐™ค๐™จ๐™š ๐™„๐™ฉ?
Process unstructured/semi-structured data easily.
Use Spark + Python for scalable engineering.
Leverage distributed compute for heavy transformations.
โš ๏ธ ๐—ง๐—ต๐—ฒ ๐—–๐—ฟ๐—ถ๐˜๐—ถ๐—ฐ๐—ฎ๐—น ๐——๐—ถ๐˜€๐˜๐—ถ๐—ป๐—ฐ๐˜๐—ถ๐—ผ๐—ป
You can query Lakehouse tables using the SQL Analytics Endpoint, but it is Read-Only. Writes and transformations happen through:
Spark Notebooks
Spark Job Definitions
Dataflows Gen2
SQL here is strictly for analytics and verification, not for data manipulation pipelines.
โšก ๐—ง๐—ต๐—ฒ ๐—ฆ๐—ต๐—ฎ๐—ฟ๐—ฒ๐—ฑ ๐—ฃ๐—ผ๐˜„๐—ฒ๐—ฟ: Direct Lake Mode Both Warehouse and Lakehouse support Direct Lake. Power BI reads directly from OneLake Delta filesโ€”no import, no refresh cycles, near real-time performance.
๐Ÿš€ ๐—ง๐—ต๐—ฒ ๐—˜๐—ป๐—ด๐—ถ๐—ป๐—ฒ๐—ฒ๐—ฟ๐—ถ๐—ป๐—ด ๐——๐—ฒ๐—ฐ๐—ถ๐˜€๐—ถ๐—ผ๐—ป ๐— ๐—ฎ๐˜๐—ฟ๐—ถ๐˜…
Make your decision based on three pillars:
1๏ธโƒฃ Team Skillset
T-SQL heavy team โž” #Warehouse
Spark / Python engineers โž” #Lakehouse
2๏ธโƒฃ Data Manipulation Strategy
SQL-based Stored Procs & DML pipelines โž” ๐—ช๐—ฎ๐—ฟ๐—ฒ๐—ต๐—ผ๐˜‚๐˜€๐—ฒ
Spark-first ETL / ELT & Notebooks โž” ๐—Ÿ๐—ฎ๐—ธ๐—ฒ๐—ต๐—ผ๐˜‚๐˜€๐—ฒ
3๏ธโƒฃ Transaction Requirements
Complex multi-table ACID logic (SQL-style) โž” ๐—ช๐—ฎ๐—ฟ๐—ฒ๐—ต๐—ผ๐˜‚๐˜€๐—ฒ
Table-level Delta ACID (Spark-style) is sufficient โž” ๐—Ÿ๐—ฎ๐—ธ๐—ฒ๐—ต๐—ผ๐˜‚๐˜€๐—ฒ
๐Ÿ”„ The Most Important Insight In Microsoft Fabric, this is not a binary decision. Thanks to Shortcuts and Cross-Database Querying:
You can reference a Lakehouse table inside a Warehouse.
Engineer in Spark.
Govern in SQL.
Visualize via Direct Lake.
This isnโ€™t either/or. Itโ€™s architecture by design.
1
1 comment
Ege Cagatay Turker
2
๐—ช๐—ฎ๐—ฟ๐—ฒ๐—ต๐—ผ๐˜‚๐˜€๐—ฒ ๐—ผ๐—ฟ ๐—Ÿ๐—ฎ๐—ธ๐—ฒ๐—ต๐—ผ๐˜‚๐˜€๐—ฒ? ๐—” ๐——๐—ฎ๐˜๐—ฎ ๐—˜๐—ป๐—ด๐—ถ๐—ป๐—ฒ๐—ฒ๐—ฟโ€™๐˜€ ๐——๐—ฒ๐—ฐ๐—ถ๐˜€๐—ถ๐—ผ๐—ป ๐—š๐˜‚๐—ถ๐—ฑ๐—ฒ
Learn Microsoft Fabric
skool.com/microsoft-fabric
Helping passionate analysts, data engineers, AI professionals (& more) to advance their careers on the Microsoft Fabric platform.
Powered by