๐—•๐˜‚๐—ถ๐—น๐˜ ๐—ฎ ๐—ฅ๐—ฒ๐—ฎ๐—น-๐—ง๐—ถ๐—บ๐—ฒ ๐—ฉ๐—ผ๐—ถ๐—ฐ๐—ฒ ๐—”๐—œ ๐—ฅ๐—ฒ๐˜€๐—ฒ๐—ฎ๐—ฟ๐—ฐ๐—ต ๐—”๐—ด๐—ฒ๐—ป๐˜ ๐˜‚๐˜€๐—ถ๐—ป๐—ด ๐—ป๐Ÿด๐—ป + ๐—ข๐—ฝ๐—ฒ๐—ป๐—”๐—œ ๐ŸŽ™๏ธ๐Ÿง 
๐—•๐˜‚๐—ถ๐—น๐˜ ๐—ฎ ๐—ฅ๐—ฒ๐—ฎ๐—น-๐—ง๐—ถ๐—บ๐—ฒ ๐—ฉ๐—ผ๐—ถ๐—ฐ๐—ฒ ๐—”๐—œ ๐—ฅ๐—ฒ๐˜€๐—ฒ๐—ฎ๐—ฟ๐—ฐ๐—ต ๐—”๐—ด๐—ฒ๐—ป๐˜ ๐˜‚๐˜€๐—ถ๐—ป๐—ด ๐—ป๐Ÿด๐—ป + ๐—ข๐—ฝ๐—ฒ๐—ป๐—”๐—œ ๐ŸŽ™๏ธ๐Ÿง 
I recently built a real-time voice-enabled AI agent that can research any question you ask and respond back in voice, almost instantly.
The goal was to move beyond text-only chatbots and build an AI system that feels natural, conversational, and research-driven.
๐Ÿ”น ๐—ช๐—ต๐—ฎ๐˜ ๐˜๐—ต๐—ถ๐˜€ ๐˜ƒ๐—ผ๐—ถ๐—ฐ๐—ฒ ๐—”๐—œ ๐—ฎ๐—ด๐—ฒ๐—ป๐˜ ๐—ฑ๐—ผ๐—ฒ๐˜€
๐ŸŽ™๏ธ Accepts real-time voice or text input from the frontend
๐ŸŒ Sends queries to an n8n Webhook for processing
๐Ÿค– Uses an AI Agent to research and understand the question
๐Ÿง  Generates a concise, high-quality summary
๐Ÿ”Š Converts the response into voice output
โšก Returns the answer back to the user in real time
๐Ÿ”น ๐—ช๐—ผ๐—ฟ๐—ธ๐—ณ๐—น๐—ผ๐˜„ ๐—”๐—ฟ๐—ฐ๐—ต๐—ถ๐˜๐—ฒ๐—ฐ๐˜๐˜‚๐—ฟ๐—ฒ
Frontend sends user input โ†’ n8n Webhook
OpenAI model processes the research query
AI Agent refines the output into a short, clear explanation
Response is sent back instantly via webhook
Voice layer delivers the final answer audibly
๐Ÿ”น ๐—ช๐—ต๐˜† ๐˜๐—ต๐—ถ๐˜€ ๐—บ๐—ฎ๐˜๐˜๐—ฒ๐—ฟ๐˜€
Most AI assistants still rely heavily on text.
This workflow shows how:
Voice-first AI experiences can be built with automation
Research-based answers can be delivered instantly
AI agents can feel more human, accessible, and interactive
Real-time AI systems donโ€™t need heavy backend infrastructure
๐Ÿ”น ๐—ง๐—ฒ๐—ฐ๐—ต ๐—ฆ๐˜๐—ฎ๐—ฐ๐—ธ
n8n (Webhooks & Workflow Automation)
OpenAI (LLM for research & reasoning)
LangChain AI Agent
Voice Input & Voice Output Layer
This project helped me learn more about:
Real-time AI workflows
Voice-based AI interactions
AI agent prompting & summarization
Building practical AI assistants with n8n
Still learning. Still building. Sharing the journey ๐Ÿš€
If youโ€™re interested in:
โœ… Voice AI Agents
โœ… AI Research Assistants
โœ… n8n Automation
โœ… Real-time AI Systems
Letโ€™s connect and learn together ๐Ÿ‘‹
Hire Me:sarfrazdeveloper7@gmail.comand watsnumber 03112817660
2
0 comments
Sarfraz Ali
3
๐—•๐˜‚๐—ถ๐—น๐˜ ๐—ฎ ๐—ฅ๐—ฒ๐—ฎ๐—น-๐—ง๐—ถ๐—บ๐—ฒ ๐—ฉ๐—ผ๐—ถ๐—ฐ๐—ฒ ๐—”๐—œ ๐—ฅ๐—ฒ๐˜€๐—ฒ๐—ฎ๐—ฟ๐—ฐ๐—ต ๐—”๐—ด๐—ฒ๐—ป๐˜ ๐˜‚๐˜€๐—ถ๐—ป๐—ด ๐—ป๐Ÿด๐—ป + ๐—ข๐—ฝ๐—ฒ๐—ป๐—”๐—œ ๐ŸŽ™๏ธ๐Ÿง 
powered by
DataLinkk AI Skool
skool.com/qya-automations-1935
DataLinkk AI Skool: Your go-to hub for mastering automation using n8n, Make.com, LangChain, LangGraph, and LangSmith for GenAI.
Build your own community
Bring people together around your passion and get paid.
Powered by